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1. Introduction

This paper is an overview of the geometric invariant theory (GIT) construction of a com-
pactification of Mg,n, the moduli space of smooth, genus g curves with n marked points.

We begin with a general outline to describe the GIT approach of constructing compact-
ifications of moduli spaces. We hope this section provides the reader with a big picture
understanding of GIT and an appreciation for the ingredients involved. In Section 3 We
then describe the GIT construction of the compactification of smooth genus g curves with
no marked points, M g, as outlined in [1]. This will allow us to describe some building blocks
and terms involved in compactifying Mg,n. In Section 4.3 we give a description of the ingre-
dients in the GIT compactification of Mg,n due to Swinarski [3]. We conclude in the final
section with an example of determining stability of elliptic curves.

2. Brief Overview of GIT

Suppose we are given a set M of isomorphism classes of varieties. It would be desirable
to somehow construct a space M which contains M as a dense open subset and where the
points inM/M are isomorphism classes of degenerations of the varieties representing classes
of M and which appear in a predictable way (meaning these degenerate objects are what
one obtains by considering continual variations from the objects in M). In other language,
we would like to construct a projective scheme M that is a compactification of M. This
means, the space M contains M as a dense open subset (so that it is a compactification)
and that M contains unique limits from M (so that it is a projective scheme). The goal of
GIT is to produce such a compactification M.

Typically there are more properties on the scheme structure of M we would like. GIT
provides a rich method for constructing such objects with these nice properties for certain
isomorphism classes of varieites. For our purposes, the above description is enough one might
desire for providing an idea behind the methods involved in GIT.

The GIT approach of constructing the compactification M is to construct such a space
as a quotient. The quotient we construct is of some larger parameter space K by an action
of a group G. To make this work, the space K is a larger, nice parameter space which
paramertirizes the objects representing classes in M with some extra data. The group G
acts on K in such a way so that the set of points of K parameterizing the extra data on
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an element C of M forms a single G orbit in K. When we take the quotient K/G, the
closed points of K/G correspond to closed points in M.The steps involved in GIT include
constructing the space K and describing the action of G on K so that the quotient is the
desired compactification. We now describe the general idea of how one actually creates such
a quotient.

2.1. A simple idea for constructing a quotient. Suppose we have a projective subva-
riety K ⊂ P(W ) where W is a linear representation of a reductive group G (i.e., there is an
action of G on W that is diagonalizable) and we want to take a quotient of K by a group
G. To create the quotient K/G, we must create a quotient map K → K/G. To do this, we
define such a map locally and then glue these maps together.

If X = Spec(R) ⊂ K is a G-invariant affine subscheme of K and RG is the subring of G-
invariant elements of R, then we define the quotient X/G to be Spec(RG) and the rational
map

φ : X 99K X/G

is dual to the inclusion f : RG ↪→ R. That is, if p ∈ Spec(RG) so that p is a prime ideal of
R, then φ(p) = f−1(p). We must patch such local maps together to form a quotient map on
the projective scheme K to the quotient K/G,

q : K 99K K/G.
Here K/G is the projective space Proj(C[K]G). In order to glue these locally defined maps
together and create the desired larger quotient map, one must describe the action of G on an
ample line bundle of K that behaves well on the fibers of the ample line bundle (the reason
for this is elaborated on in Section 2.4). Such an action on an ample line bundle is called a
linearization.

In summary, this procedure produces a map q : K 99K K/G with K = Proj(C[K]) and
K/G = Proj(C[K]G) so that the quotient map is given by taking the values of homogeneous
G-invariant polynomials on K.

There is a lot of work required to make all of the definitions make sense in the above pro-
cedure. For example, the ring of invariants C[K]G must be suitably nice in order to define
such a map into Proj(C[K]G). For example, it must be Noetherian, it can’t be too large, and
it can’t be too small. It turns out such questions are quite difficult to address and are related
to “Hilbert’s 14th Problem.” For further details, see a the classical text on the subject [2].
We do not go into these issues here, rather we summarize and further describe the two main
ingredients one must have in order to construct a quotient map as described above and give
motivation for the importance of these ingredients.

2.2. Ingredients for GIT. There are two ingredients necessary to describe a space of good
quotients K/G (i.e., a space K/G who’s closed points are orbits of G in K). They are as
follows,

(1) K, a parameter space whose objects parametrize those in M with more data, and
(2) a linearization of an ample line bundle on K.
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2.3. The Parameter Space. Again, we would like to construct a quotient K/G whose
closed points correspond to G-orbits of K. With a potential parameter space K, we must
restrict this space before taking a quotient to only those points in K whose G orbits are
indeed closed. We call a point x ∈ K a semistable point if it has such a nice G-orbit. The
semistable locus of K, denoted by Kss, represents all such stable points. Results from Mum-
ford have shown that when restricting to the semistable locus Kss, the quotient Kss/G does
indeed consists of closed points representing G-orbits and will be a compactification of the
original space of isomorphism classes, M.

In more GIT generality, there are three classifications of points in a parameter space K
in relation to an action of G. This classification consists of points as semistable, polystable,
and stable, [2]. Naively, semisetable points are those whose G orbits do not contain 0,
polystable are points that are semistable and have a closed orbit, and stable are points that
are polystable and the dimension of the orbit is equal to the dimension of G. The amaz-
ing insights of Mumford (from examples of Hilbert) show that the classification of all three
types of points can be determined simply be considering how the torus of G acts on the
point. Explicitly, Mumford’s result is called “The Hilbert-Mumford Numerical Criterion.”
This criterion provides a simple condition for determining the classification of a given point
x ∈ K in a numerical way. See [1, Theorem 4.17] for the full statement. We will see this
numerical criteria explicitly for elliptic curves in Section 5.

2.4. The Linearization. Referring back to section 2.1 on the simple idea of GIT, recall
that when constructing a locally defined quotient map, we must consider how we will glue
the local maps together. To do this, we embed the space K in some projective space. This
brings into the picture an ample line bundle L on K. Indeed, any embedding provides an
ample line bundle (i.e., by pulling back the the ample bundle O(1) on the target space). We
have an action of G on K but to describe the action on K as an embedded variety, we must
define an action of G on the line bundle L. We would like such an action to exhibit some
nice properties, particularly this action must fix the fibers of the line bundle. An action of
G defined on L with this property is called a linearization of G.

In the case when the objects we are parametrizing are genus g cures with n marked points,
we will see an example of such a linearization (see Section 4.2).

3. Summary of construction of Mg using GIT

We now describe the ingredients in the GIT construction of the compactification of the
moduli space Mg of smooth curves C of genus g. This will introduce some of the objects
involved in constructing M g,n as a GIT quotient in Section 4.

The first ingredient we need is the parameter space K of which we will take a quotient.
As we described in the previous section, to do this, we consider a larger space of pairs
consisting of curves with some extra data. With such a collection of pairs, we then want to
take a quotient which will identify the additional data in such a way that the objects in our
quotient are indeed the isomorphism classes making up Mg.
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The larger space we consider consists of curves with an embedding into projective space
by a power of their canonical line bundle, ωC. The canonical line bundle is the line bundle
associated to the canonical divisor class of the curve. Recall, for a curve C, the canon-
ical divisor class, K, is the linear equivalence class consisting of divisors of meromorphic
differentials on C. Thus, the line bundle ωC has global sections consisting of everywhere
differential forms on C. One can check that for all g, the line bundle ωC is ample. As an
example, the canonical line bundle of an elliptical curve is trivial. The property of ωC being
ample means that some power of it provides us with an embedding of C into projective space.

It is stated in [1, p. 194] that for any n ≥ 3 the nth power of the canonical class, ω⊗nC ,
embeds C into projective space of dimension (2n− 1)(g− 1)− 1 as a degree 2(g− 1)n curve.
We call this embedding the “nth-canonical embedding of C.” Specifically then, the parameter
space K consists of pairs (C, φ : C → P(2n−1)(g−1)−1) where C is a curve of genus g and φ is
the nth-canonical embedding of C into P(2n−1)(g−1)−1.

This space conveniently lives in a larger scheme called the Hilbert Scheme. The Hilbert
Scheme HP,r parameterizes subschemes X of r-dimensional projective space, X ⊂ Pr with
Hilbert polynomial P . Recall, for a subscheme X ⊂ Pr, the Hilbert polynomial is defined
as a polynomial that agrees with the Hilbert function for large values. Hence, for large m,
the Hilbert polynomial computes the dimension of global sections of an ample line bundle.
That is, PX(m) = h0(X,OX(m)) where OX is an ample line bundle on X. If deg(X) = d
and dim(X) = s then the polynomial PX(m) has leading term dms

s!
. For more details on a

construction of this scheme, see [1, Sect. 1.B].

Since the subschemes of Pr we are interested in parametrizing are curves (and so the di-
mension of the subschemes of interest are one) the Hilbert polynomial of any such subscheme
is of the form P (m) = dm − g + 1, where d is the degree of the curve and g is the genus.
Hence, the only variant we must consider is the degree and genus. We denote this Hilbert
scheme consisting of curves of Pr with a fixed genus g and degree d as Hd,g,r. One can either
realize this space as parametrizing abstract curves of arithmetic genus g plus a very ample
linear system of degree d or as parametrizing subcurves of Pr of degree d and genus g. The
abstract setting allows us to describe a subsheme of Hd,g,r which is exactly the space of pairs
we described in the previous paragraph. We now connect these two ideas.

By considering a space of genus g curves with an embedding into projective space by ω⊗nC ,
we find ourselves describing a subscheme of the Hilbert Scheme Hd,g,r for d = 2(g− 1)n and
r = (2n − 1)(g − 1) − 1. As we just described, abstractly Hd,g,r can be considered as the
space parametrizing abstract curves of arithmetic genus g plus a very ample linear system
of degree d. Explicitly then, let K ⊂ Hd,g,r be the subset in Hd,g,r of curves with very ample
linear system of degree d isomorphic to the nth-canonical embedding of C, ω⊗nC .

4. Summary of construction of Mg,n using GIT

In [3], Swinarski uses GIT to construct a compactification M g,A for the moduli space of
weighted pointed curves. As a consequence of describing the parameter space and lineariza-
tions for when such weighted pointed curves are stable, he obtains a result on the stability of
pointed curves [3, Theorem 7.1]. Taking a quotient of this parameter space with a specified
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linearization produces the compactification of interest [3, Theorem 7.2]. We describe the
parameter space and linearization now. In this discussion, we have more data associated to
the objects initially being parametrized. These objects are weighted pointed stable curves,
(C,P1, ..., Pn,A) which consist of the following data:

• C, a reduced connected projective algebraic curve of genus g with at worst nodes as
singularities,
• Pi, n distinct points that lie on C and are ordered,
• A = (a1, ..., an), an n-tuple such that

– ai ∈ Q ∩ [0, 1],
– ai = 0 if Pi is a node, and
– the Q−line bundle ω(

∑
aiPi) is ample on C.

In the final condition, the line bundle ω(
∑
aiPi) is simply the line bundle associated to

the divisor class containing K + a1P1 + ...+ anPn where K is a canonical divisor.

4.1. The Parameter Spaces. Similar to the parameter space used in the construction of
Mg (see Section 3), the parameter space here involves a Hilbert scheme. If (C,P1, ..., Pn,A)
is a weighted marked curve of genus g, then ω(

∑
aiPi) is ample and so a large enough mul-

tiple of this line bundle gives an embedding of C into some projective space Pr. It is natural
then to consider pairs in a Hilbert Scheme consisting of the curve C and this ample line
bundle ω(

∑
aiPi). Doing so again describes a subscheme K of a Hilbert Scheme Hd,g,r. The

subscheme of interest K parameterizes those varieties whose ample line bundle is isomorphic
to ω(

∑
aiPi).

The curves in our investigation also include a collection of n marked points. To record
this information, we include the images of these n points on the embedding of C in Pr by a
power of ω(

∑
aiPi).

In final, the parameter space we consider is a subscheme I in the following product

Hd,g,r × Pr × ...× Pr︸ ︷︷ ︸
n copies

.

The subscheme I consists of elements (K,P1, ..., Pn) where K is in the subscheme K in a
Hilbert scheme described in the previous paragraph, and (P1, ..., Pn) ∈ ΠnPr are the images
of the n marked points of C in Pr embedded by a power of ω(

∑
aiPi).

4.2. The Linearizations. As is stated in [3, p. 5], a linearization of a line bundle on
I ⊂ Hd,g,r × ΠnPr is given by an embedding of Hd,g,r × ΠnPr into a very large projective
space. Such an embedding is by an n+1-tuple (m,m1, ...,mn). Indeed, the m determines
an embedding of the Hilbert scheme Hd,g,r into a Grassmannian and each mi determines
an mi-uple embedding of Pr into another projective space. A Segre embedding of all of
these projective spaces yields an embedding of the full Hd,r,g × ΠnPr into a very, very large
projective space.

Furthermore, to specify an embedding (and thus a linearization), it is only necessary to
specify the ratio between m and each mi. For m sufficiently large and γ depending on the
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data of the weighted marked curve, Swinarski uses the following linearization (m1, ...,mn)
on I:

(4.1) mi := γaim2.

4.3. The final quotient. Swinarski then claims in [3, Theorem 7.2] that for the subscheme
I described above and for a sufficiently large m the linearization given by the mi defined in
4.1, that when a quotient is take, we obtain the following

(4.2) I//SL(N + 1) ∼= M g,A.

Furthermore, it is stated that for some small ε, if 1/2 + ε < ai <
1
2γ

for i = 1, ..., n, then

(4.3) I//SL(N + 1) ∼= M g,n,

obtaining a desired compactification of Mg,n using GIT.

Much of the work in the argument in [3] to show 4.2 is to describe the stability of a smooth
pointed curve with respect to a one parameter subgroup. To do this, Swinarski begins with
a 1-PS λ of SL(N + 1) and considers the action of λ on a smooth pointed curve. From
this action, he obtains a way of partitioning into a sequence of subspaces the vector space
H0(C,O(1)) of global section on our curve determined by an ample line bundle O(1). This
is called a filtration of H0(C,O(1)). He modifies this filtration slightly so that he is able to
translate the action of λ and determine stability of a smooth pointed curve with respect to
a linearization.

5. An Example: GIT stability of elliptic curves

Much of the importance involved constructing quotients using GIT is to determine sta-
bility and semistability of the objects in a parameter space. To demonstrate this, we carry
out an example of determining stability of elliptic curves. This example shows that when
considering a space parametrizing all genus one curves, the stable ones are preciely those in
the our original set of isomorphism classes, that is, smooth elliptic curves.

As we stated in Section 2.2, the first ingredient in constructing a GIT quotient is a pa-
rameter space K. To construct a quotient whose orbits are identified with closed points
in M, the elements in K must be stable with respect to an action of a group G. In this
section, we exam this deeply for the case of elliptic curves (i.e., genus one curve) and analyze
the consequences of the stability condition for such curves. This discussion is from work in
[1, Chap. IV].

Let M1 be the set of isomorphism classes of smooth genus one curves. The parameter
space we consider is the space

K = P(Sym3(C3)̌) = P({x3, x2y, xy2, x2z, xz2, xyz, y3, y2z, yz2, z3}).
This is the projectivization of the space of degree three monomials in three variables.

Recall, that any genus one curve can be expressed as the zero locus of a homogeneous degree
three polynomial,

C = V(f(x, y, z)).
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Hence, any such polynomial (and so genus one curve) is naturally an element of the dual
space K above determined by the coefficients of the monomials defining it.

Furthermore, consider the space
K −∆

where ∆ denotes the discriminant hypersurface (i.e. the collection of signal cubic curves).
This space then parametrizes smooth genus one curves with a choice of homogeneous co-
ordinates. Two genus one curves C and C ′ are isomorphic if there is an automorphism of
P2 sending C to C ′. In this way, the group G = SL3 (the automorphism group of P2) acts
on K − ∆. Hence, the space K − ∆ parametrizes genus one plane curves with a choice of
homogeneous coordinates.

Let’s then consider when a curve C ∈ K is stable with respect to this action. We saw in
Section 2.3 that to show that C is stable, it is enough to show that C is stable with respect
to every one parameter subgroups (1 PS), λ : C∗ → G. This means, it is enough to consider
the action of the torus on C.

For G = SL3, a 1-PS, λ, has the following form:

λ(t) =

 ta 0 0
0 tb 0
0 0 tc


where a+ b+ c = 0 (this is because the elements of SL3 are 3× 3 matrices with determinant
one and the torus in SL3 consist of the diagonal elements).

For a single monomial xiyjzk, we see that λ(t) has the following action:

xiyjzk 7→ tai+bj+ckxiyjzk.

Let’s then consider how such an element λ acts on a genus one curve, C. If C is given by
the polynomial

f(x, y, z) =
∑

i+j+k=3

cijkx
iyjzk,

then λ(t) acts on C by action of the polynomial f(x, y, z) the following way,

λ(t).f(x, y, z) 7→
∑

i+j+k=3

cijkt
ai+bj+ckxiyjzk.

With this understanding of the action of λ on C, we can interpret the Hilbert-Mumford
Criteria to say the following:

C is λ stable ⇔ some cijk 6= 0 for ai+ bj + ck < 0.

This means that when acting on C by λ(t), there will be a term which appears in the new
defining polynomial with a negative power of t.

One can analyze λ-stability in some specific cases and conclude (as is done in [1, p. 204])
that C is λ-stable if and only if C is smooth. By analyzing the symmetry involved in the
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λ-stability condition, one can argue further, that λ-stability of a specific example is enough
to conclude stability for any 1-PS. In conclusion, the following claim can be made:

C is stable ⇔ C is smooth.

This example shows that the parameter space considered when constructing a GIT quo-
tient to represent isomorphism classes of smooth elliptic curves, does not pick up any more
objects than was already considered. The only stable genus one curves are smooth curves.
Furthermore, by analyzing semistability of genus one curves, we see that at worst only nodal
curves will be included when expanding to the semistable locus.

This discussion then shows that the compacitificatoin M1 includes isomorphism classes of
smooth curves and picks up isomorphism classes of curves with at worst nodal singularities.
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