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1. Introduction

Our main object of interest is the moduli space Mg,n, the moduli space of stable genus
g curves with n marked points and maps from them into other projective varieties. It is
thus natural to study vector bundles over these spaces, as the determinant line bundle of
a vector bundle give a map from Mg,n into the projectivization of their global section.

The vector bundles which play the lead character in our story are the vector bundles of
conformal blocks. These vector bundles have many amazing properties, some of which
I will describe in this talk. They are globally generated and so the maps they give are
morphisms. Furthermore, the dual of a fiber over an interior point is isomorphic to the
spaces known as “generalized theta functions” which are of independent interest in the
study of moduli spaces of vector bundles.

History and Background Isomorphisms were first shown in some special cases by
[Ber93], [Tha94], and [Zag95]. The isomorphism in general was shown in [Bea94], [Dri95],
[Fal94], and [Kum94].

2. Background on representations of simple finite dimensional Lie algebras

We first go through some background material on simple Lie algebras (Note: semi simple
means direct sum of simples, simple means no nontrivial ideals) and their representations.

In this document we refer to g as a simple complex Lie algebra. Our primary examples
will be slr+1 and sp(4). Recall briefly that a (complex) Lie algebra, g, is a vector space
over C equipped with the operation of “bracket” operation [, ] : g × g → g that is bilinear,
symmetric, and satisfies the Jacobi identity. The Jacobi identity means that for any x, y, z ∈ g
we have [x, [y, z]] − [y, [x, z]] + [z, [x, y]] = 0.

Example 2.1. The Lie algebra glr(C is the collection of r × r matrices with elements in C is a Lie
algebra with bracket being the commutator. That is [A,B] = AB − BA for any A,B ∈ gl.

Example 2.2. The Lie algebra slr+1 is the collection of matrices in glr+1 with trace zero. A typical
Cartan subalgebra consists of all those matrices which are diagonal.
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Example 2.3. The Lie algebra sp(2r) is the collection of matrices, X in gl2r such that SX = −XtS,
where S is the 2rr matrix described as follows(

0 In
−In 0

)
This is often called the symplectic Lie algebra

We fix a Cartan subalgebra h ⊂ g (a maximal abelian sub algebra of g consisting of semi
simple elements). (A semi simple element h ∈ g means the linear map ad(h) : g → g is
diagonalizable). We denote by Φ the root system of gwith this choice of Cartan subalgebra
h, ∆ the base of Φ, and Φ+ the positive roots.

For any g module, V and λ ∈ h∗, we denote by Vλ = {v ∈ Vλ : h.v = λ(h)v for all h ∈ h∗}.
The root space α ∈ Φ are the elements gα = {x ∈ g : α(h)x = [h, x], for allh ∈ h}, that is, the
root space is the weight space of the root α with the g given the adjoint action. We can
think of such weight spaces as the eigen vectors of h. We denote θ the longest root, that is
θ
∑
αi∈∆

αi. See Example 2.4 below.

Since commuting linear maps can be simulatiosly diagonalized, h acts diagonalizably
on g with the adjoint representation. Hence, we have a decomposition of g = g+ ⊕ h ⊕ g−

where g+ = ⊕α>0gα and g− = ⊕α>0g−α.

The Killing form K : g × g→ C defined as:

K(X,Y) = trace(adXoadY)

is non degenerate on h and so the map θ : h→ h∗ (defined below) is an isomorphism:

H 7→ θH,

where
θH : h→ C, such that θH(M) = K(H,M).

For α ∈ h∗, define Tα = θ−1(α) ∈ h. The Killing form, along with the isomorphism θ,
defines an inner product on h∗ as follows:

< α, β >= K(Tα,Tβ).

We often normalize this inner product by using α̌ = 2α
<α,α> on the longer root, so that

< α, α >=< α, α̌ >= 2. We call the element,

Hα =
2Tα

< α, α >
,

the coroot of α. In this setup we have, λ(Hα) =< λ, α̌ > or < λ, α >with the scaled form. The
coroot defined above, can also be defined as the unique Hα ∈ [gα, g−α] such that α(Hα) = 2.

Furthermore, the Lie algebra g can be decomposed into sl2(α)-triples where α ∈ Φ+. An
sl2(α)-triple is a collection of elements e ∈ gα, f ∈ gα, and h ∈ h such that the following
relations hold,

[h, e] = 2e, [h, f ] = −2 f , [e, f ] = −h.
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We now say a few words about the weight lattice P ⊂ h∗. This lattice consist of linear
forms λ ∈ h such that < λ, α >∈ Z for all α ∈ Φ. Such a weight is dominant if in fact all
< λ, α >≥ 0. Denote by P+ the set of all such dominant weights of g. Let {Hα1 , ...,Hαn} be the
set of coroots for αi ∈ ∆ in the base (these form a basis for h. The elements ω j ∈ h

∗ such that
ω j(Hαi) = δi j are a basis of h∗. We call this dual basis to the coroots of simple roots the basis
of fundamental dominant weights. All dominant weights are positive linear combinations of
these weights. Let P+

` = {λ ∈ P+ :< λ, θ >≤ `} where θ is the longest root. We call this
set the collection of dominant integral weights of level `. We will see the importance of these
weights in the discussion of representations of affine Lie algebras.

Example 2.4. The following is a basis for sln+1:

{Ei, j : 1 ≤ i ≤ n + 1, 1 ≤ j ≤ n + 1, i , j}∪

{Ei,i − E1+i,1+i : 1 ≤ i ≤ n},
where Ei, j is the elementary (n + 1) × (n + 1) matrix with a one in the i row and j column and all
other entries zero. A base, ∆, of the root system is given

∆ = {αi = εi − εi+1, 1 ≤ i ≤ n}.

The highest root is θ =
∑n

i=1 αi = ε1 − εn+1.
The sl2(εi − ε j) triples can be described by:

{Ei j,E ji,Eii − E j j}.

We will see later the importance of the sl2(θ)-triple: Xθ = E1,n+1,X−θ = E1,n+1,Hθ = E1,1−En+1,n+1.

The “dominant weights” P+ are given by
∑n

j=1 a jε j such that a1 ≥ a2 ≥ ... ≥. All dominant
weights can be written as a nonzero integer linear combination of the following weights, {ωi =∑i

j=1 ε j, 1 ≤ i ≤ n}. We call these the “fundamental” dominant weights. Recall also the relation∑n+1
j=1 ε j = 0}.

Example 2.5. The following is a base and basis of fundamental dominant weights for sp4:

∆ = {α1 = ε1 − ε2, α2 = 2ε}

Fundamental dominant weights{ω1 = ε1, ω2 = ε1 + ε2}

θ = 2ω1 = 2α1 + α2.

2.1. Irreducible representations of g. For every dominant weight λ ∈ P+ there is a unique
(up to isomorphism) finite dimensional irreducible g-module with heights weight λ, we
will denote it V(λ). We show (in the following construction) that V(λ) is generated by a
highest weight vector vλ over U(g−) (where g = g− ⊕ h ⊕ g+ is the triangulation decomposi-
tion of g). We describe the construction to justify this claim.

An irreducible highest weight ĝ-module can be constructed as the largest quotient of the
U(g)-module U(g) ⊗U(B) Cλ (where Cλ is the one dimensional representation of g). It can be
shown that such a module is cyclic (see [Hum72] section 20.3). By this property, it must
have a maximal proper ideal. We obtain V(λ) via this quotient.
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The irreducible representation V(λ) contains a highest weight vector vλ with weight λ
that is, x.(vλ) = 0 if x ∈ gα with α > 0 (i.e., is a highest weight vector) and h.vλ = λ(h)v for
h ∈ h (i.e., has weight λ). Such an argument shows that the map λ 7→ [V(λ)] (where [V(λ)]
is the isomorphism class of V(λ)) is bijective.

3. Affine Lie algebras

We now give some background on affine Lie algebras to the extent which are necessary in
the construction. For more details on the following information I will refer you to Chapter
7, 9, 10 of [Kac94]. In this talk, we will focus on the affine Lie algebra ĝ associated g defined
as follows:

ĝ = (g ⊗ C((z))) ⊕ Cc,

where C((z)) is the ring of Laurent polynomials in the variable z (polynomials in z allowed
to have infinite negative or positive powers of z). This affine Lie algebra is often called a
central extension of (g ⊗ C((z))) by c or the derived Lie algebra of the loop algebra consid-
ered in [?Kac] (definition in chapter 7). We can summarize a few facts about this Lie algebra.

The bracket of two elements in (g ⊗ C((z))) is given by

[X ⊗ f ,Y ⊗ g] = [X,Y] ⊗ f g + c<̇X,Y > Resz=0(gd f ).

It can be checked, due to the residue formula that this bracket defines a Lie algebra (see
notes from email June 4th). The center element c is trivial on bracket (since it is in the center).

Similar to the finite case with g, ĝ has a decomposition into subspaces (and in fact Lie
subalgebras due to the definition of [, ] and using residue theorem) ĝ+ = (g ⊗ zC[[z]]) and
ĝ− = (g ⊗ z−1C[z−1]) as follows:

ĝ = ĝ− ⊕ g ⊕ Cc ⊕ ĝ+.

This decomposition will play an important role in the remaining discussion of the con-
struction of our conformal blocks. We will denote p := g ⊕Cc ⊕ g+ (this is analogous to the
“Borel” in the finite case).

In [Kac94] (chapter 7) an explicit description of generators of ĝ is given. If {e1, ..., es, f1, ..., fs}

is a Chevellay basis of g, then generators for ĝ is as follows:

Ei = ei ⊗ 1,Fi = fi ⊗ 1, for i = 1, ..., s and F0 = f0 ⊗ z−1,E0 = −ω( f0) ⊗ z.

Where we have chosen f0 ∈ gθ where θ is the largest root of g and e0 = −ω( f0) the Chevaley
involution (for slr this involution is the negative transpose). An interesting fact is that
{e0, e1, ..., es} generate the finite Lie algebra g (as e0 contains an element of n−).

Example 3.1. For the Lie algebra sl2 with basis {e, f , h} basis for ˆsl2. Note for slr+1 hieghest root is
ε1 − εr+1 and Xθ = E1,r+1 the elementary matrix.
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4. Properties of irreducible representations of the affine Lie algebra ĝ

We now turn to irreducible representation of ĝ. Such representations must have an
action by the center c ∈ ĝ. It can be checked that this action must be multiplication by some
integer ` ∈ Z. We call a representation where the center acts by ` ≥ 0, a representation of
level ` and refer to ` as the level. Let P+

` denote the set of dominant weights of g such that
λ(Hθ) =< λ, θ >≤ ` where θ is the longest root of Φ.

We will explore and prove some of the following properties and statements of an irre-
ducible ĝ-module.

Proposition 4.1. For each λ ∈ P`, there exists a unique, irreducible (integrable) ĝ-module (called
the integrable highest weight ĝ-module) denotedHλ satisfying:

(1) V(λ) � {v ∈ Hλ : u.v = 0 for all u ∈ ĝ+} (where V(λ) is the irreducible highest weight
g-module introduced in section 2.1.

(2) The center elements c ∈ ĝ acts onHλ as `Id.

(3) Hλ is generated by a height weight vector, vλ, with ĝ− and the only relation

(Xθ ⊗ 1/z)`−(θ,λ)+1vλ = 0,

where θ is the longest root of g and Xθ ∈ gθ (with gθ the root space of θ and Xθ the element
in sl2(θ) triple with coroot Hθ).

Example 4.2. For slr+1 we have the following highest root and sl2(θ)-triple:

θ = ε1 − εr+1

Xθ = E1,n+1,X−θ = En+1,1,Hθ = E1,1 − En+1,n+1.

To explain Proposition 4.1 we first outline the construction ofHλ. We begin by defining a
few terms and objects and state a few important results from [Kac94] used in the reasoning
of the construction ofHλ.

We denote by g(A) a Kac-Moody algebra associated to an arbitrary n × n matrix A (see
[Kac94] for a more explicit definition). This general object does not play much importance
to us, but such a classification of objects contains the affine Lie algebras of our interest.
And so the following statements are applicable to us. Let V be a g(A)-module. We denote
Vλ = {v ∈ V : h.v = λ(h)v, h ∈ h}, the λ weight space.

Definition 4.3. Category O is the category whose objects are g(A) modules V which are h diago-
nalizable with finite dimensional weight spaces such that there exists a finite number λ1, ..., λs ∈ h

∗

such that P(V) ⊂
⋃

D(λi), where P(V) = {λ ∈ h∗ : Vλ , 0} and D(V) = {µ ∈ h∗ : µ ≤ λ}. We
can think of such modules as having finitely many “peaks” or highest weight spaces (this insightful
interpretation is thanks to Dr. Boe).

Definition 4.4. The Verma module M(Λ) is a highest weight g(A)-module with highest weight Λ
that every g(A)-module with highest weight Λ is a quotient of this module by some sub-module, i.e.
looks like M(Λ)/Z where Z is some submodule of M(Λ). All Verma modules are objects in Category
O.
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The following are propositions regarding such modules.

Proposition 4.5. (See [Kac94] Prop 9.2)
(1) For all λ ∈ h∗ there exists a unique Verma module M(Λ).
(2) As a U(n−)-module, M(Λ) is a free module of rank one and is generated by a highest weight

vector. Here n− is the subalgebra in the triangular decomposition g(A) = n− ⊕ h ⊕ n+ (see
page 145 of [Kac94]).

(3) M(Λ) contains a unique proper maximal submodule M′(Λ). As such, the quotient L(Λ) =
M(Λ)/M′(Λ) is an irreducible module.

Proposition 4.6. (See [Kac94] Prop 9.3) ) Let V be a nonzero module from category O. Then
(1) V contains a nonzero weight vector v such that n+(v) = 0.
(2) V is irreducible⇔ V is a highest weight module and any primitive vector of V is a highest

weight vector⇔ V � L(Λ).
(3) V is generated by primitive vectors as a g(A) module.

Lemma 4.7. (See [Kac94] Lemma 3.2) We restrict to sl2(αi)-triples. Let V be a sl2(αi)-submodule
of a ĝ module. Denote by e, g, h the elements in ĝ of the sl2(αi) triple. Let c = αi(h) for some c ∈ C;
and let v ∈ V be such that h(v) = αi(h)(v) = cv. Set v j = ( j!)−1 f j(v). Then: h(v j) = (c − 2 j)v j and
if e(v) = 0, then: e(v j) = (c − j + 1)v j−1.

Lemma 4.8. (See [Kac94] Lemma 10.1) The g(A)-module L(λ) is integrable if and only if λ ∈ P+.
And particularly we must have f <λ,ᾰi>+1

i (v) = 0 for i = 1, ...,n.

Proof. We prove Lemma 4.8 above.
We can show that this lemma follows from the sl2-triple relations in Lemma 4.7 restricted
to the ei, fi, hi triples of g(A). Since we assume L(Λ) is an irreducible highest weight module
by 4.6(b) every primitive vector is a highest weight vector. Denote < λ, ᾰi >= ai. If
it were the case that f ai+1

i (v) was not zero, then from Lemma 4.7 it would follow that
ei( f ai+1

i (v)) = (ai + 1)!(ai − (ai + 1) + 1) f ai(v) = 0 (follows immediately from Lemma 4.7 if we
replace c = ai and j = ai + 1). And since [e j, fi] = 0 for all i , j, the vector f ai+1

i (v) would
be primitive (i.e., killed by all ei ∈ g(A)−). However, such a vector is not a heights weight
vector (as it is not a multiple of v). This contradicts the equivalence in 4.6 (b). We see that
vectors of this form are the only such multiple of f which must be zero. �

5. Construction of irreducible ĝ representations

Now, to constructHλ we begin with V(λ), the irreducible g-module with highest weight
λ such that < λ, θ >≤ `. We can define an action of p = g⊕C · c⊕ ĝ+ on V(λ) in the following
way:

c.vλ = `vλ and ĝ+.vλ = 0.
We define Vλ := U(ĝ) ⊗U(p) V(λ). We can show that such a module is a Verma module

(this construction is similar to how the existence of Verma modules was outlined in ??
Chapter 9). This means thatVλ has a unique proper maximal submodule Zλ.
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Furthermore, by the PBW theorem, the universal enveloping algebra (the unitary asso-
ciative algebra with basis elements given by products and all powers of basis elements of
of ĝ) has the following decomposition:

U(ĝ) = U(ĝ+) ⊕U(h) ⊕U(ĝ−) = U(p) ⊕U(ĝ−).

Hence, we can write Vλ = U(ĝ−) ⊗C V(λ) with the extended action of p on V(λ). By
Proposition 4.5 Vλ is generated by a highest weight vector v. And again, we know
that there exists a unique maximal proper submodule Zλ of this module. We denote the
irreducible quotient as:

H`
λ =Vλ/Zλ.

We now show this maximal submodule is generated by a vector vλ over ĝ− with the only
relation (Xθ ⊗ z−1)`−λ(Hθ)+1(v).

6. Generators and relations ofH `
λ

We now explain Proposition 4.1. By Proposition 4.6(b) considering the generators of
ĝ given above, we see that the only potential element of U(g−) which may generate a
submodule of Vλ is F0(v). (Recall the definition of F0(v) in Section 3, F0 = f0 ⊗ z−1 where
f0 ∈ gθ). This is because the entire module is generated by v as U(g−)-module and all
all other terms can ‘move’ across the tensor. We change our notation slightly to match
Beauville’s discussion; we write f0 = Xθ. Now, by Lemma 10.1 and formulas in Lemma
4.7, it follows that the lowest power for which F0 is primitive is, < λ, ᾰ0 > +1. From page
100 of [Kac94], the definition of ᾰ0 = δ − θ. This becomes:

< λ, δ − θ > +1 = `− < λ, θ > +1.

(Note that Kacs’ includes ˘ in his notation, however, he not consistent with using this
notation for pairing in h or h∗. We try to infer his meaning from context.).

Again, the above shows that (Xθ ⊗ z−1)`−<λ,θ>+1(v) is the smallest power of F0(v) which is
primitive. By Proposition ??(c) such an element generates a submodule ofVλ (submodules
are only generated by primitive elements) and indeed, such an element generates a maximal
submodule, since this again is the smallest such power producing a primitive vector. Hence,
the unique maximal submodule of Vλ is generated by (Xθ ⊗ z−1)`−<λ,θ>+1. When we take
the quotient ofVλ with this submodule, we obtain an irreducible highest weight module
(from Proposition 4.5(c)). It then follows thatHλ is generated by the highest weight vector
v with the relations that g(v) = 0 and (Xθ ⊗ z−1)`−<λ,θ>+1(v) = 0.

Remark 6.1. The level ` is relevant to to this discussion in how we defined the action of U(p) on
the irreducible representation Vλ and also how the weight λ pairs with θ. A different level ` would
specify a different U(p) action and power.

This completes our construction of Hλ and gives us specific properties about it with
which to work.
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